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Abstract. The critical dynamics of the d-dimensional semi-infinite systems is studied at 
bulk critical temperature. As a result of the conformal invariance, the dynamic response 
and correlation functions depend only on the ‘real’ distance r, the ‘image’ distance P and 
the time t (mirror theory). Assuming the non-conserved order parameter with O ( n )  
symmetry, we evaluate the response and correlation functions exactly in the large-n limit 
and also to first order in E = 4 - d. Our results satisfy the mirror theory for the various types 
of the phase transitions including the ordinary, special, anisotropic special and extra- 
ordinary transitions. 

1. Introduction 

Critical phenomena at surfaces have been studied extensively with considerable current 
interest (Binder 1983). For the static case, the scaling relations among surface critical 
exponents were investigated by use of several theoretical techniques (Reeve and 
Guttmann 1981, Diehl and Dietrich 1981a, b, Ohno and Okabe 1983a, b, c, 1984, Ohno 
et a1 1984) and the various aspects of phase transitions aroused a lot of experimental 
interest (Alvarado et al 1982, Gidley et a1 1982, Schlossman et a1 1985, Weller er a1 
1985). The general surface equation of state was also discussed recently (Nakanishi 
and Fisher 1982, Okabe and Ohno 1984, Kikuchi and Okabe 1985a, b). 

In the series of papers on the l / n  expansion and &(=4-  d )  expansion, Ohno and 
Okabe (1983c, 1984,1985) pointed out that the mirror theory holds in the semi-infinite 
systems at bulk criticality; the two-point correlation function G ( r , ,  r z )  of the semi- 
infinite systems depends only on the ‘real’ distance r = / r ,  - r,l and the ‘image’ distance 
F = Ir, - rTI ( r ;  is the image point of r2) at bulk critical temperature. This mirror theory 
automatically results in the surface scaling relation 2q1 - rill = 7. 

Recently, Cardy (1984) showed that the special property of G( r , ,  r2)  (mirror theory) 
can be attributed to the invariance under the conformal transformations which preserve 
the surface geometry (see also Ohno and Okabe 1985). Conformal invariance is the 
idea originally introduced to the critical phenomena by Polyakov (1970). The fixed- 
point Hamiltonian and hence the many-point correlation functions at criticality are 
expected to be invariant under the local renormalisation group (RG) transformations 
which consist of the following two steps. The first step is the conformal transformation 
corresponding locally to a dilatation, 

rj = b(r , - ’ r , ,  (1.1) 
plus a rotation. The second step is a local rescaling of each spin variable with a factor 

(7 is the anomalous dimension of the spin). The constraint due to the b ( ‘, ) - d - 2+ 7 )/ 2 
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conformal invariance becomes stronger in two-dimensional (d = 2) systems and deter- 
mines the explicit form of the correlation functions (Cardy 1984, Burkhardt 1985). 

The dynamics of the semi-infinite systems, on the other hand, has been studied by 
several authors. The relaxation process near surfaces was first discussed by Kumar 
(1974) and Kumar and Maki (1976). The finite-size scaling study of the time-dependent 
Ginzburg-Landau (TDGL) model was elaborated by Suzuki (1977). Tanaka (1979) 
dealt with the semi-infinite chain system exactly. More recently, Dietrich and Diehl 
(1983) carried through the field-theoretical E expansion for the dynamics of the 
semi-infinite TDGL model and asserted that there is no genuine surface dynamic 
exponent. The general theory concerning this property was explored by Kikuchi and 
Okabe (198%) with the use of Monte Carlo simulation. 

The purpose of this paper is to show that the conformal invariance and the mirror 
theory hold for the dynamics of the general semi-infinite systems at bulk criticality. 
This is the Jirsr report to treat the conformal invariance of the semi-infinite systems as 
a dynamic problem. We will discuss this subject in the following ways. In 9 2, we 
derive the mirror theory for the dynamics by assuming the conformal invariance. Next, 
developing the exact n +a solution (0 3) and the expansion in E = 4 -  d ( 5  4), we 
explicitly obtain the response and correlation functions which satisfy the mirror theory. 
Discussions are given in § 5. 

2. Mirror theory for dynamics 

The idea of the conformal invariance can be extended to the dynamicst. It is convenient 
to introduce different times r , ,  r,, . . . , r N  for individual particlest. Then the dynamic 
correlation functions at criticality are invariant under the RG transformations accom- 
panied by local time rescalings r ;  = b(rl)-'rl with the dynamic exponent z. 

The invariance under the special conformal transformation 

- rj - 'J 

' I  ' J  
a - i + a  

which does not change the surface geometry ( a  is parallel to the surface plane) permits 
only two independent space variables in the static correlation function. They are the 
real distance r and the image distance P (Ohno and Okabe 1983c, 1985). It should be 
noticed that there is the same property in the case of the dynamics because we may 
expect the invariance under the same conformal groups. Hence, together with the 
requirements of homogeneous functions, the dynamic response and correlation func- 
tions of the semi-infinite systems at T =  T, are written as 

G (  r ,  , r,; t )  = Gbulk( r ;  t ) @ (  r /  P, r g ( r ) ) ,  ( 2 . 2 ~ )  

C(r, ,  r,; t )  = CbUlk(r; t ) @ ( r / f ,  r g ( r ) ) ,  (2.26) 

respectively. Here GbUlk( r ;  f )  and Cb"Ik( r ;  r )  are the response and correlation functions 
of the corresponding bulk system. The function g ( r ) ,  whose dimensionality is equal 

t The bulk d = 2 system was discussed quite recently by Cardy (1986). 

static correlation function. 
From another viewpoint, Abe (1984) exploited this formalism to obtain an exact closed equation of the 



Conformal invariance and mirror theory 1043 

to that of the frequency w,  specifies the scaling law between the real distance r and 
the time interval t ,  so that it agrees with the bulk one 

l( r )  = rr-’. (2.3) 

Here z is the usual bulk dynamic exponent (Ma 1976, Hohenberg and  Halperin 1977). 
Equation (2.2) with (2.3) gives the mirror theory for the dynamic problem. This 
equation can be recast in various ways. The convenient one is 

d v ,  71, (2.4a) 

(2.46) 

Here y ,  and y 2  are the normal distances from the surface (we use y, instead of the 
conventional z, to avoid any confusion with the exponent z), p is the distance parallel 
to the surface and U and r denote 

( 2 - d - q - z ) / 2  G(r1, r2; t )  = Gb(Yl, Y 2 )  = ( Y l Y 2 )  

C(r1, r2; t )  = Ct(Yl, Y 2 )  = ( y 1 Y 2 ) ‘ 2 - d - ” ’ / 2  f ( v ,  7). 

y : + y : + p 2  r2+ r 2  
2y,y2 y 2 - r 2  

-- - U =  

and 

T=- , 
YlY2 

(2.5) 

respectively. The important point of these equations is that the timescale is determined 
by the bulk dynamic exponent. This point is to be identified with the conclusion of 
the paper of Dietrich and  Diehl (1983) and with the concept used by Suzuki (1977). 
However, the equations from (2.2) to (2.6) impose a stronger restriction on the response 
and correlation functions in real s p x e  because only v and 7 are allowed for their 
arguments. 

Once the mirror theory is assumed, it is easy to derive various asymptotic forms. 
Let us focus our attention on the correlation function. First of all, in the limit r /  ?+ 0 
or equivalently in the limit U + 1, @( r /  ?, tl( r ) )  in (2.2) becomes unity since it approaches 
the bulk correlation funciion. On the other hand, wh:n y ,  - 0, the function f ( v ,  r )  in 
(2.46) behaves as U-’ f ( u / T ) .  Here the function f ( u / r )  becomes constant in the 
limit U / T  + CO; 6 is the static exponent which is related to T~~ and T~ via vIl = 2 - d + 2 6  
and T~ = ( 2 -  d + r])/2+ 6 (Ohno and Okabe 1985). Thus we have 

-, y ; - d - ” _  
Y l - - o , v 2 + , =  

-7 (2.7) - 4  t ( 2 - d - t l l , ) / z  

\ l - o * f - m  

In deriving thedast relation in (2.7), we used the result of the short distance expansion 
showing that f ( u / r )  behaves as ( v / r ) *  for u / T + O  (Dietrich and  Diehl 1983). Of 
course, we retrieve the static correlation function if we put t = 0 in CL(yl, y 2 ) .  

3. Large-n limit 

Below, we will show that the response and  correlation functions have indeed the forms 
like ( 2 . 4 ~ )  and (2.4b). Specifically, we will consider the case of the non-conserved 
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order parameter (case A of Hohenberg and  Halperin 1977) with O(n )  symmetry and  
omit any mode-mode coupling terms. Our calculation here is based on the following 
two limiting approaches. One is the exact approach in the large-n limit and the other 
is the first-order (one-loop) approximation in the E (  = 4 -  d )  expansion. Since the latter 
can be performed along the same line as the former, we will mainly concentrate on 
the large-n limit. The points to be modified in the case of the E expansion will be 
mentioned briefly in  the next section. 

We start from the semi-infinite TDGL model at  T = T, associated with the Hamil- 
tonian 

(3.1) 

We include a possibility of the surface anisotropy and take for granted that c e S  c h  

(Diehl and Eisenriegler 1984, Ohno et a1 1985). The surface order exists when c, is 
lower than the special critical value c*  which is known to be O ( E ) .  When c ,>  c* ,  the 
ordinary transition (0) is expected generally, whereas the special transition (Sp) occurs 
for c, = ch = c*.  If c, = c* and ch > c*, the anisotropic special transition (ASp) takes 
place. Otherwise, if c, < c*, the surface order lives at bulk T, where the extraordinary 
transition ( E )  takes place. The schematic phase diagram is shown in figure 1 .  Following 
the standard derivation (see, for example, Ma 1976), we find that the response function 
obeys 

in the large-n limit. Here the term proportional to y;' arises from the self-energy (42), 
which is equal to that evaluated for the statics. For the discussions in the case of the 

c,-c* 

t 

Figure 1. Schematic phase diagram of the model (3.1).  Planes, 0, E and S indicate the 
ordinary, extraordinary and surface transitions. The line of intersection Asp and the small 
circle Sp correspond to the anisotropic and isotropic special transitions, respectively. 
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statics, see Bray and Moore (1977), Ohno and Okabe (1983a, b, c, 1984) and Ohno et 
a1 (1985). The values of the parameter p are listed in table 1.  

Since there is a translational symmetry parallel to the surface, we may transform 
(3.2) into the qw space and have 

(3.3) 

The solution of (3.3) is readily obtained by using the Fourier-Bessel transformation 

(3.4) 

One can easily check that G:"(z, z ' )  reduces to the static correlation function. Then 
the inverse transformation can be easily performed by noting 

exp (iot) 
d o  =re(?) exp[-T(sZ+q2)t], 

217 -- sz + q2 - i w / r  (3.5) 

1 I dd-'q exp(iq p)  exp(-rq2t) = (4 I7 r t ) ( exp( -$). (3.6) 

In equation ( 3 . 9 ,  e ( t )  denotes the Heaviside step function. The rest integral may be 
carried out by the integral formula (Gradshteyn and Ryzhik 1965) 

JOm d s s exp( - r sz t J, ( vl J, ( v2) 

=-exp( 1 -*) Y ? + Y 2  I,(E) 
2 r t  (3.7) 

( I , ( x )  is the modified Bessel function). Thus we finally obtain the real-space response 

Table 1. List of the values of p given in the large-n limit and in the E expansion. The 
parameter /I, which is related to the surface critical exponent v!, via = 1 +2p,  has different 
values according to the spatial dimension d, the spin dimension n and the type of phase 
transition. For the extraordinary transition, p = (d - 1)/2 gives the exact surface critical 
exponentsforthetransversecomponent (Ohnoand Okabe 1984). 

Type oftransition Large-n limit E expansion 

Ordinary 

Special 

( d - 3 ) / 2  ( 2 < d < 4 )  
1 n + 2  

1 n + 2  

1 n - 2 m + 2  
2 2 ( n + 8 )  

1 n - 2 m - 2  

_-____ Anisotropic special ( d - 3 ) / 2  ( 3 6 d < 4 )  
(hard component) 

Anisotropic special ( 3 - d ) / 2  ( 3 c d < 4 )  
(easy component) 2 2(n+8)  

(transverse component) 
Extraordinary ( d - 1 ) / 2  ( 2 < d < 4 )  
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function 

with U and T given by ( 2 . 5 )  and ( 2 . 6 )  (we must put z = 2 ) .  Obviously the response 
function (3.8) has the form of ( 2 . 4 a ) .  

The correlation function is obtained by the fluctuation-dissipation theorem (Ma 
1976) 

C" = (2/w) Im G". (3.9) 

In the present case, we can simply rewrite the relation (3.9) in t space and have 

C' = 1,; d t  G'. (3.10) 

Expanding (3.8) in the power series of l / t  and carrying out the t integration term by 
term, we see that C' is also in the form of (2.4b). The long-distance or long-time 
behaviour is given by (2.7) with 711 = 1 + 2 p ,  7 = 0 and z = 2 for each type of phase 
transition. 

4. E expansion 

In the mean-field ( E ' )  approximation (which is equivalent to taking the limit d + 4 in 
the expressions of n + CO limit), we have equation (3 .2 )  or (3.3) with p = it. The 
dynamic correlation function beyond the mean-field theory was discussed by Dietrich 
and Diehl(l983) in Fourier space. To first order in E ,  only the one-loop graph illustrated 
in figure 2 contributes to the response function whose self-energy is equal to that 
evaluated for the statics. It leads to a deviation of the value of p from if. Table 
1 lists the resulting values of ,LL for various phase transitions (Lubensky and Rubin 
1975, Bray and Moore 1977, Diehl and Eisenriegler 1984). All the other calculations 
from (3.2) to (3.10) are perfectly the same as before and we have the same response 
function (3.8) but with the different values of p. Expansion of (3 .8 )  around the 
mean-field value p = it may be obtained by utilising 

1 
(e" Ei( - 2 x )  r e-x E ( 2 x ) ) .  (4.1) 

Here Ei( - 2 x )  and E ( 2 x )  are the exponential integral function and the related exponen- 
tial integral function, respectively. Combining (3.8) with (4.1) and introducing a new 

Figure 2. One-loop graph appearing in the  E expansion. The self-energy part of this graph 
has the same contribution as that given in the static calculations. 
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parameter K by 

p = it+ K E ,  

we have the response function accurate to O ( E )  as 

1047 

(4.2) 

TeXp[-(v+ 1)/T][1 +KEE(-2/T)]}+O(Ez). (4.3) 

The value of K for each type of phase transition is found by the substitution of p listed 
in table 1 into (4.2). The correlation function is obtained by the fluctuation-dissipation 
theorem which in the present case is equal to (3.10). The asymptotic behaviour of the 
correlation function is again given by (7) with vIl = 1 + 2p, v = 0 and z = 2. This result 
is accurate to O ( E ) .  

5. Discussions 

In this paper, we have discussed the conformal invariance and the mirror theory which 
is expected for the dynamics of the semi-infinite systems. One of the important 
conclusions of this paper is that the response and correlation functions at bulk critical 
temperature have the forms given by (2.4). We have called this special property the 
mirror theory because these functions depend on the space variables only through two 
combinations, i.e. the real distance r and the image distance F. Such a property is well 
known in classical electrodynamics. Of course, our systems are more complicated due 
to their intrinsic non-linearity, so that the principle of superposition is invalid beyond 
the mean-field theory. 

We have shown that the mirror theory is certainly satisfied in the two specific 
approaches: (i) the exact approach in the large-n limit; (i i)  the one-loop approximation 
in the E expansion. For both approaches the resulting response function in real space 
is given by (3.8) and the correlation function is expressed in an integral form (3.10). 
In the case of the E expansion, an alternative form of (3.8) which is expanded to O ( E )  
is given by (4.3). The values of the parameter p are listed in table 1. 

We have considered several possible phase transitions including the ordinary 
transition, the special transition, the anisotropic special transition and the extraordinary 
transition. The mirror theory should be valid for all of these transitions. In the case 
of the extraordinary transition, we have not discussed the longitudinal component of 
the correlation function. This is only due to the complexity. In our earlier work (Ohno 
and Okabe 1984), we have treated the static longitudinal function in the large-n limit 
and shown that it satisfies 

(5.1) C k = O ( Y I ,  Y z )  = (YlY2)1-d/zf( 01, 

where i ( p )  is a function of p = ( d - 1 ) / 2  and Qz(x) is the associated Legendre 
function of the second kind. Equation (5.1) is just the static limit of (2.3b), so that 
we might expect that the corresponding dynamic correlation function be given in the 
form of (2.4b). 
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